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Abstract 

The molecular structure of 2,2'-thiobis(4-methyl-6-ten-butylphenoxy) titanium diisopropoxy (Is) has been determined. The molecule 
exists as a dimer, in which the 1,3-dioxadititanacycle is supported by two bridging 'PrO ligands. The coordination environment about 
each Ti center is best described as a distorted octabedron, where the S atom and one 'PrO iigand occupy the axial positions, whilst two 
terminal phenolate and two bridging iPtO ligands occupy the equatorial sites. The eight-membered dioxatitanacycle adopts a 
symmetric-syn boat conformation, which allows for a significant sulfur-titanium interaction (S-Ti distance 2.724(2) A). A comparison 
between these structural features and those reported for the monomeric tetrabedral complexes 2b and 2(I, where the sulfur atom is 
replaced by a methylene bridge in the bisphenoxy ligand, highlights the influence of the S-Ti interaction on coordination geometry. The 
structural features suggested for la to account for the higher catalytic activity of Ia/MAO in polymerization of a-olefins as compared 
with 2a/MAO are clearly demonstrated. 
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I. Introduction 

Phenolate complexes of Group IV transition metals 
in combination with MAO have been reported recently 
to polymerize olefins and diolefins [1]. 

Of particular interest are the catalysts prepared from 
2,2'-thiobis(4-methyl-6-tert-butylphenoxy)MX2(la-e) 
and 2,2'-methylenebis(4-methyi-6-tert-butyl phenoxy)- 
MX2(2a,b) (Scheme 1). These catalysts have been used 
for the polymerization of ethylene [lax-el, propylene 
[lax], styrene lib,c] and some dienes [lc-e], and also 
for the alternating copolymerization of ethylene and 
styrene lib,c]. The catalysts prepared from la,b have 
been found to be more active than those prepared from 
2a,b in the polymerization of styrene [ib,c], ethylene 
lie] and 1,3-dienes [2]. It has been speculated that this 
difference of activity may be due to an increased ligand 

flexibility and to effects of possible 1r-donation from 
sulfur to titanium in la,b [Ic,e]. Indeed, in some com- 
pounds of phosphorus [3] and silicon [4] with chelating 
2,2'.thiobisphenoxy ligands a significant P-S or Si-S 
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Fill. I. Suructure of the binuclem' complex la. Selected bond lengths (~) and angles (o): Ti-OI 2.014(3)' Ti-Oi# 2.029(3), Ti-O2 1.767(3)' 
11=O) I,il'/8(3), Ti=O4 1,899(3), Ti-S 2.724(2); O2-Ti=O3 98.4(2), O2-Ti-O4 99.0(2)' O3-Ti-O4 92.5(2)° O2-11-OI 101.2(2), O3-Ti-OI 
95,47(14), O4=11=OI 156.95(14), O2=11=O1# 102,9(2), O3=Ti=OI# 157.43(14), O4-Ti-OI# 91.39(14), OI-Ti=OI# 73.30(14), O2-Ti-S 
171.9"/(12), O3=Ti=S 76,34(11), O4=11=S 75,46(11), OI-Tt=S 85.48(10), Ti-OI=Ti# 106.70(14). (#, Equivalent atoms generated by the 
symmetry transformation - x  + I / 2 , -  y + I / 2 , -  :,) 

C122) 

C(11) 

0131 
0(1) 

0(2) 

Fig. 2. The immediate coordination sphere of Ti atoms in complex la. 
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interaction has been found. Although the molecular 
structures of 21) [5a], 2.c [5c1, 2d [5a], 2e [51)] and 2f [Sb] 
have been determined by X-ray diffraction, no structural 
data are available on the thio analogues la-e. Our 
interest in the polymerization of dienes with catalysts 
prepared from la -e  prompted us to investigate the 
molecular structure of la. The distinctive structural 
features suggested for la,b to account for the higher 
catalytic activity of la,b/MAO as compared with 
2a,b/MAO in polymerization reactions are clearly 
demonstrated in this communication. 

2. Experimental, results and discussion 

Complex la was prepared following a modification 
of a literature procedure [la,6]. Red crystals of la were 
obtained from a toluene/hexane solution at room tem- 
perature. 

Fig. 1 shows the binuclear 2,2'-thiobis(4-methyl-6- 
tert-butylphenoxy) titanium diisopropoxy complex as 
determined from the crystallographic investigation. Fig. 
2 shows the immediate coordination sphere of the Ti 
atoms, displaying two edge-fused octahedra. 

The most distinctive feature of la is the Ti-S dis- 
tance of 2.724(2) ~, ca. 0.8 ,/[ shorter than the sum of 
the Van der Waals radii of the two atoms [7] but 
substantially longer than Ti-S single bonds (typically 
2.3-2.4 A) [8]. The geometry of the Ti-S interaction is 
characterized by an angle of 4 ° between the normal to 
the plane defined by S, C22, C12 and the Ti-S direc- 
tion (see Fig. 2). The value of this angle is somewhat 
small but compatible with one of the sulfur lone pairs 
interacting with the electrophilic Ti atom. Similar inter- 
actions with divalent sulfur have been reported for 
various atomic species [9], but so tar not with Ti. Its 
attractive nature clearly results from the participation of 
the S atom in the distorted octahedrai coordination 
geometry of Ti [10]. The S atom and one IPrO ligand 
occupy the axial positions, whilst two terminal pheno- 
late and two bridging IPrO ligands occupy the equato- 
rial sites. All the O-Ti-O and O-Ti-S bond angles are 
reasonably consistent with this description. A substan- 
tial distortion from octahedral coordination in la relates 
to the bridging oxygen atoms (OI-Ti-Ol" = 73.3(1) °) 
and is dictated by the geometry of the 1,3-dioxatitana- 
cycle. Accordingly, the Ti-OI and Ti -Ol '  bond dis- 
tances are substantially elongated. Indeed, all these 
features and the Ti(l)-Ti(#1) distance of 3.243(2) ,~ 
correspond closely to the geometries observed in other 
d°-d ° dinuclear complexes containing a Ti-O-Ti-O 
core [5e,10,1 I]. 

However, if only the alkoxy groups are considered 
and the S-Ti interaction is disregarded, the coordination 
can be described as distorted square-pyramidal with the 
Ti atom displaced by 0.346 A from the plane defined by 
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Fig. 3. A comparison of" the eight-membered ring geometry in 2d 
(from Ref. [Sb]) (top) and la (bottom), evidencing the dihedral 
angles between least-squares planes and relevant interatomic con- 
tacls. 

03, O4, Ol and O1' in the direction of the apical 02 
atom (see Fig. 2). Consistent with this description the 
bond to the apical 02 atom is the shortest Ti-O bond. 

A comparison with the dimeric complex [(Me2- 
BINO)Ti(O-IPr) a ]2 [5e] (H2 Me2 BINO B 3,Y-dimethyi- 
I,l'-bi-2.naphthol), which bears similar ligands, is of 
interest. The coordination environment abt~ut each Ti 
center in this compound is a highly distorted trigonai 
bipyramid, with a bridging naphtholate iigand and one 
PrO iigand in the axial positions, whilst one JPrO, a 

terminal naphtholate and a bridging naphtholate ligand 
occupy the remaining equatorial sites. A trigonai-bi- 
pyramidal arrangement has also been recently observed 
for 2c [5c]. Thus, it seems that in the case of la the S 
atom has a major role in determining the octahedrai (or 
the square-pyramidal) coordination. 

An additional structural feature evidencing the attrac- 
tive nature of the Ti-S interaction is the symmetric-syn 
boat conformation of the eight-membered dioxatitanacy- 
cle of la, which differs from that adopted by 2b and 2d 
[5a]. As shown in Fig. 3, the dihedral angle between the 
planes defined by Ti, 03, 04 and 03, 04, C21, CI I in 
la is 131 °, whilst the corresponding angle in 2d has a 
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value of 178 °. Accordingly, the S-Ti distance in la 
( 2 . ~ 2 )  ~)  is considerably shorter than the distance, 
close to 3.30 .~, between the carbon of the methylene 
bridge and the titanium atom in 2b and 2d. The T i - O -  
CAr angles (average value 132 ° for la and 145 ° for 
2b,d) are also different [12], which reflects the lower 
Ti-OA, bond order as well as the larger Ti-OA, bond 
distances in In as compared with 21) and 2d. 

Although the Ti-S interaction is probably weak, it is 
likely to be of importance in stabilizing the active 
cationic species [13,14], facilitating its formation from 
l a b  and MAO and making the coordination of ~ e  
counterion less tight [15]. These effects would account 
for the enhanced overall activity of the catalysts pre- 
pared from lab.  Further work aimed at gaining more 
insight into the nature of the active species is in progress. 
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